CHIRAL MATERIALS SCIENCE USING LIGH
USING LIGHT TO ESTABLISH A NEW FIELD OF CHIRAL MATERIALS
―Understanding the universal property of chirality could lead to new materials and technologies for photonics and other applications.
Research Keywords:Applied Optics,Optical Vortex,Chirality
Of the many mysteries still to be unrav- eled in the natural sciences, one of the most compelling is the origin and power of chirality — the property of a molecule or object that has two mirror-image forms — like our left and right hands.
Chirality is universal in biology, chemistry and physics. It critically affects the biochemical processes underpinning life, is a vital aspect of drug discovery, and crops up in particle physics. Light can have chiral properties that affect how it interacts with matter. But how can the power of chirality be harnessed and controlled? And what new discoveries and technologies might this give rise to? These are some of the questions Takashige Omatsu and his team are asking.
Light beams can be chiral when they are imparted with so-called helical wave-fronts, that is, polarity that rotates either left or right. “We can use ‘optical vortices’ to twist the physical properties of metals, semiconductors and organic materials on the nanoscale to create chiral nanostruc- tures with unique features,” says Omatsu. “Our goal is to establish chiral photonic materials as an original research field and to pioneer new technologies such as chiral plasmonics and metasurfaces for nanoscale chiral chemical reactors, chiral-selective imagers and chiral sensors,” he explains.
LIGHT CORKSCREWS
Omatsu’s team focuses on the interaction between helical light and materials, and the physical properties and potential uses of such modified materials. The electromagnetic field of helical light rotates as the light moves through space. When this field interacts with conductive materials like metals, nanoscale corkscrew-like variations in physical properties can be inscribed on the material’s surface. The modified surface can then react differently to left- and right-handed chiral molecules or helical light, giving rise to a range of interesting possibilities for chemical sensing, synthesis and imaging.
“We can use helical light to create nanostructures such as twisted needles, twisted reliefs and twisted fibers,” says Omatsu. “We have also found that the same process can polymerize fullerene — a well-known functional organic molecule that is normally not conductive. This causes fullerene to form a novel conductive metallic phase, which could be used as the basis for fab- ricating electronic devices without metals and semiconductors.”
Omatsu believes ‘nanovortices’ will one day be used for nanoscale precision control of light polarization, electron orbital motion and the aggregation of chiral molecules. “Our research will lead to materials for next-generation photonics and electronics, and new applications in chemical synthesis, pharmacy, biology and medicine,” he says. “It might also allow us one day to answer the scientific mystery: ‘Why does handedness exist in nature?’”
Omatsu has collaborated with many Japanese and international researchers, and is always looking for students and early career researchers. “Our research center brings together physicists, chemists, biologists and even medical doctors, and we frequently have brainstorming meetings to think up ideas for new projects,” he says. “Several international researchers work here. There is a wonderful diversity of backgrounds and expertise.”
(CHIBA RESEARCH 2020)Members
Principal Investigator
Name | Title, Affiliation | Research Themes |
---|---|---|
OMATSU Takashige | Professor, Graduate School of Engineering |
Photonix |
Co-Investigatior
Name | Title, Affiliation | Research Themes |
---|---|---|
ISHII Hisao | Professor, Center for Frontier Science | Organic Electronics |
SAKAMOTO Masami | Professor, Graduate School of Engineering | Organic Chemistry |
MURATA Takeshi | Professor, Graduate School of Science | Asymmetric Synthesis Structural Biology |
KRUGER Peter | Professor, Graduate School of Engineering | Structural Biology |
YOSHIDA Hiroyuki | Professor, Graduate School of Engineering | Organic Electronic Properties of Solids |
OTO Kenichi | Professor, Graduate School of Science | Semiconductor Physics |
YAMADA Toyokazu | Associate Professor, Graduate School of Engineering |
Scanning Tunneling Spectroscopy Nanomaterials |
AOKI Nobuyuki | Professor, Graduate School of Engineering | Semiconductor Materials |
NAKAMURA Kazuki | Associate Professor, Graduate School of Engineering | Optical Materials |
ARAI Takayoshi | Professor, Graduate School of Science | Organic Synthetic Chemistry |
YANAGISAWA Akira | Professor, Graduate School of Science | Organic Synthetic Chemistry |
YAGAI Shiki | Professor, IGPR | Materials Chemistry |
YOSHIDA Kazuhiro | Associate Professor, Graduate School of Science | Organic Synthetic Chemistry |
NEMOTO Tetsuhiro | Professor, Graduate School of Pharmaceutical Science | Organic Synthetic Chemistry |
AKAZOME Motohiro | Associate Professor, Graduate School of Engineering | Organic Crystal Chemistry |
MATSUURA Akira | Professor, Graduate School of Science | Molecular and Cellular Biology |
NISHIDA Yoshihiro | Professor, Graduate School of Horticulture |
Bio-organic Chemistry, Glycotechnology |
ITO Kohji | Professor, Graduate School of Science | Biochemistry, Plant Physiology |
TAKAHASHI Hiroki | Associate Professor, Medical Mycology Research Center | Bioinformatics |
UMENO Daisuke | Specially Appointed Professor, Graduate School of Engineering | Synthetic Biology, Microbiological Engineering |
ANZAI Naohiko | Professor, Graduate School of Medicine |
Pharmacology |
IIDA Keisuke | Associate Professor, Graduate School of Engineering | Organic Synthesis, Medicinal Chemistry |
OGASAWARA Satoshi | Specially Appointed Associate Professor, IGPR | Antibody Engineering |